®

Shipping a stable compiler
every six weeks

RustFest Barcelona, November 10th 2019



Pietro Albini

Rust Infrastructure team co-lead
Rust Release and crates.io teams member

Rust Security Response WG member

github.com/pietroalbini

www.pietroalbini.org


https://github.com/pietroalbini
https://www.pietroalbini.org

Rust 1.39.0 Is out!

Released on November 7th, 2019.



Rust 1.38.0

Released on September 26th, 2019.
lines added and 91,886 lines removed.

5 regressions reported after the release (2 of them broke valid code).


https://github.com/rust-lang/rust/compare/1.37.0...1.38.0
https://github.com/rust-lang/rust/compare/1.37.0...1.38.0
https://github.com/rust-lang/rust/compare/1.37.0...1.38.0
https://gist.github.com/pietroalbini/b02cadb117cfe49ad17e0168ce543e2d#1380

Rust 1.37.0

Released on August 15th, 2019.
lines added, and 56,658 lines removed.

3 regressions reported after the release (all of them broke valid code).


https://github.com/rust-lang/rust/compare/1.36.0...1.37.0
https://github.com/rust-lang/rust/compare/1.36.0...1.37.0
https://github.com/rust-lang/rust/compare/1.36.0...1.37.0
https://gist.github.com/pietroalbini/b02cadb117cfe49ad17e0168ce543e2d#1370

Rust 1.36.0

Released on July 4th, 2019.
lines added, and 66,425 lines removed.

4 regressions reported after the release (2 of them broke valid code).


https://github.com/rust-lang/rust/compare/1.35.0...1.36.0
https://github.com/rust-lang/rust/compare/1.35.0...1.36.0
https://github.com/rust-lang/rust/compare/1.35.0...1.36.0
https://gist.github.com/pietroalbini/b02cadb117cfe49ad17e0168ce543e2d#1360

How do we prevent regressions?




Why do we have this schedule?



It's unusual In the compiler world.

Python
C/C++ (GCC)

Python*

PHP

Java

C/C++ (clang)
JS (Chrome) @) 6 weeks

JS (Firefox)
Rust

JS (Firefox)*

*: new schedule, planned to be used in the near future



No pressure to ship.



pietroalbini on Aug 13 Member +@ p T

Rust 1.38 is scheduled to branch off today, but this PR didn't land yet and there are a bunch of blockers
still open. If we still want to stabilize async_await in 1.38 we need to land this stabilization PR right now

and then backport the blockers.

I'd prefer to stabilize async_await in Rust 1.39 though, to give the compiler and language team more
time to properly iron the feature out. I'm aware lots of people would like to use async_await as soon as

possible, but I'm not happy rushing things out.

cc @rust-lang/lang @rust-lang/release

o5 B'l-@l @o il v (IIER 7 [l



https://github.com/rust-lang/rust/pull/63209#issuecomment-520741844
https://github.com/rust-lang/rust/pull/63209#issuecomment-520741844

Long release cycles don't work for us.



aturon (Aaron Turon) on Sep 5, 2018 - edited ~ Member +(&) & °-

EDIT: see this important update to the proposal.

We're getting close to the cut-off point for stabilizations for the Edition, and of course this
feature is one of the most important ones remaining to get nailed down.

Based on the commentary in this tracking issue, the previous tracking issue, and various
forum posts, | think it's fair to say that the strong majority of people who have tried any
variant of 2018 modules prefer it to 2015 modules. And rustfix migration seems to be
working well to limit the amount of manual churn required. So from a high level, | think
we're in good shape to stabilize some variant for Rust 2018.

Given the limited time we have, | want to propose that we take a conservative route.
We would ship the anchored paths variant, but with future-proofing that would make it
possible to move to uniform paths later. The future proofing is simple: if foo is both an
external crate name and a local item name, then a use statement must either say use
::foo or use self::foo , just as it would in the uniform paths variant.


https://github.com/rust-lang/rust/issues/53130#issuecomment-418824862
https://github.com/rust-lang/rust/issues/53130#issuecomment-418824862

aturon commented on Sep 6, 2018 Member

Given the concerns @joshtriplett raised -- the most important of which is that the future-
proofing is not currently implemented and may take some time to land -- | want to revise
the proposal slightly:

e For the upcoming release candidate 1, which will serve as a beta for the edition, we
stabilize anchored paths as-is, but also allow you to opt in to uniform paths (on the
beta channel) so that we can continue testing it and especially testing the ambiguity
code.

e Over the next release cycle, we work to address remaining "false ambiguities" and to
fully future-proof anchored paths for the final Edition release. (Or, potentially, we
reach a firm consensus on one or the other path variants and just ship it directly,
rather than the conservative version).


https://github.com/rust-lang/rust/issues/53130#issuecomment-418913061
https://github.com/rust-lang/rust/issues/53130#issuecomment-418913061

[beta] resolve: Implement edition hygiene for imports and Edit
absolute paths #56053

N Gl bors merged 6 commits into rust-lang:beta from petrochenkov:absedihyg E& on Nov 26, 2018

1%

{

(&7 Conversation 79 -0- Commits 6 &, Checks 0 Files changed 48 +644 -541 HEEE

petrochenkov (Vadim Petrochenkov) on Nov 19, 2018 - edited ~ Member +(@&@) o °- Reviewers

& nikomatsakis
The changes in behavior of imports and absolute paths are the most significant breaking changes of 2018
edition. Centril v
However, these changes are not covered by edition hygiene, so macros defined by 2015 edition crates
expanded in 2018 edition crates are still interpreted in the 2018 edition way when they contain imports or Assignees Fo)
absolute paths.

& nikomatsakis

This means the promise of seamless integration of crates built with different editions, including use of

macros, doesn't hold fully.
This PR fixes that and implements edition hygiene for imports and absolute paths, so they behave Labels 0

according to the edition in which they were written, even in macros. S-waiting-on-author


https://github.com/rust-lang/rust/pull/56053
https://github.com/rust-lang/rust/pull/56053

Thankfully 1t ended well.

Congrats to everyone involved in Rust 2018!



How do we prevent regressions?



The compiler's test suite.



Using the compiler
In the compiler 1tself.



Bug reports from users.



We can't ask people
to manually test beta.



|dea!
Let's test our users' code ourselves.



Crater

Crater Queue Agents
Name Assigned to Reqs Mode Priority Status
beta-1.40-1 distributed linux cargo test 10 Running (2%)
beta-1.40-rustdoc-1 - linux cargo doc 5 Queued

Crater 0904dda



More than 75,000 projects tested, from crates.io and GitHub



Run cargo test on every project
with two compiler builds.



Crater report for beta-1.39-1 Summary Full report Downloads 74234 crates tested

1.38.0 beta-2019-09-28

broken (5335)




eraserhd.parinfer-rust.d9e7a2917ebfaccf93133b0009a4df135¢c38c19a
h3nnn4n.Strange-Attractor-Explorer.cac4cb37380f343bf20819f34dde9929¢c51098e7
hiroshiyui.libwonderarray.dd9b18d88105863b58027a94951ebfedf9af5133
mantal.expert system.873622fa400d5bd721e592f22561e98860f69536
slazicoicr.oam_histogram_qc.76f1995e64ae232319aa05d407466f6ce0d927f0
slp.qsd.4538983da0f5c8dfca2e92ea01b41d2146db60cbh
theaaf.decklink-rs.a9862c2764457485d3b5e858696986d25ff47519
adhesion-0.5.0

async-core-0.1.0

cmark-gfm-sys-0.29.0

cmark-gfm-0.1.1

croaring-sys-0.4.1

croaring-0.4.1

derive less-0.2.0

duktape ffi raw-2.30.0

test passed

test passed

test passed

test passed

test failed

test failed

build failed

test passed

test passed

test failed

build failed

test passed

build failed

test passed

test passed

test failed

test passed

test failed

test failed

build failed

build failed

test passed

build failed

test passed

build failed

test passed

build failed

test passed

build failed

build failed




Crater report for beta-1.38-1 Summary Full report Downloads 70078 crates tested

1.37.0 beta-2019-08-13

broken (1794)




Crater is not perfect...



Crater i1s not perfect...

..today it works great though! &



Let's recap!

Fast release cycles allow us not to worry about deadlines.

Crater is the tool allowing us to do that without breaking the world.



Thanks!



